
 

D
ow

nloaded from
 https://academ

ic.oup.com
/function/article-abstract/doi/10.1093/function/zqaa012/5876834 by guest on 30 July 2020



The effects of chloroquine and hydroxychloroquine on ACE2 related coronavirus 

pathology and the cardiovascular system: An evidence based review

Li Chen1,*; Haiyan Chen2,*; Shan Dong3,*; Wei Huang4,*; Li Chen5; Yuan Wei6; 
Liping Shi7; Jinying Li4; Fengfeng Zhu8; Zhu Zhu8; Yiyang Wang9; Xiuxiu Lv9; 
Xiaohui Yu9; Hongmei Li9; Wei Wei9; Keke Zhang9; Lihong Zhu9; Chen Qu9; Jian 
Hong9; Chaofeng Hu9; Jun Dong9; Renbin Qi9; Daxiang Lu10; Huadong Wang10,#; 
Shuang Peng9,#; Guang Hao11,#

1. Georgia Prevention Institute, Department of Medicine, Medical College of Georgia, 
Augusta University, Augusta, GA 30912, USA 
2. Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
3. Guangzhou First People's Hospital, The Second Affiliated Hospital of South China 
University of Technology, Guangzhou 510180, China
4. Department of Gastroenterology, The First Affiliated Hospital of Jinan University, 
Guangzhou 510630, China
5. Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital 
of Jinan University, Guangzhou 510630, China
6. Center for Scientific Research and Institute of Exercise and Health, Guangzhou 
Sports University, Guangzhou 510500, China
7. Department of urology, The First Affiliated Hospital of Jinan University, Guangzhou 
510630, China
8. Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital Of 
University of South China, Hengyang 421001, China
9. Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 
510632, China
10. Department of Pathophysiology, Key Laboratory of State Administration of 
Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, 
Jinan University, Guangzhou 510632, China
11. Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 
510632, China

Running title: CQ/HCQ in controlling virus and cardiovascular effects

*These authors contributed equally to this work.

#Corresponding authors:

Huadong Wang MD/PhD
Department of Pathophysiology, School of Medicine, Jinan University
601 Huangpu Avenue West, Guangzhou, Guangdong 510632 
Phone: 86 020 85220241 Fax: 86 020 85221343 Email: owanghd@jnu.edu.cn

 

© The Author(s) 2020. Published by Oxford University Press on behalf of the American Physiological Society. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/function/article-abstract/doi/10.1093/function/zqaa012/5876834 by guest on 30 July 2020



Shuang Peng MD/PhD
Department of Pathophysiology, School of Medicine, Jinan University
601 Huangpu Avenue West, Guangzhou, Guangdong 510632 
Phone: 86 020 85223480 Fax: 86 020 85221343 Email: pengshuang@jnu.edu.cn

Guang Hao MD/PhD
Department of Epidemiology, School of Medicine, Jinan University
601 West Huangpu Road, Guangzhou, Guangdong 510632 
Phone: 86 020 85226335 Fax: 86 020 85226335 Email: haoguang2015@hotmail.com

ORCID:

H.W.: 0000-0002-2197-3624

S.P.: 0000-0002-0163-9047

G.H.: 0000-0003-3780-0223

D
ow

nloaded from
 https://academ

ic.oup.com
/function/article-abstract/doi/10.1093/function/zqaa012/5876834 by guest on 30 July 2020

mailto:pengshuang@jnu.edu.cn
mailto:haoguang2015@hotmail.com


Abstract

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to 

global public health and there is currently no effective antiviral therapy. It has been 

suggested that Chloroquine (CQ) and hydroxychloroquine (HCQ), which were 

primarily employed as prophylaxis and treatment for malaria, could be used to treat 

COVID-19. CQ and HCQ may be potential inhibitors of SARS-CoV-2 entry into host 

cells, which is mediated via the angiotensin-converting enzyme 2 (ACE2), and may 

also inhibit subsequent intracellular processes which lead to COVID-19, including 

damage to the cardiovascular system. However, paradoxically, CQ and HCQ have also 

been reported to cause damage to the cardiovascular system. In this review, we provide 

a critical examination of the published evidence. CQ and HCQ could potentially be 

useful drugs in the treatment of COVID-19 and other ACE2 involved virus infections, 

but the antiviral effects of CQ and HCQ need to be tested in more well-designed clinical 

randomized studies and their actions on the cardiovascular system need to be further 

elucidated. However, even if it were to turn out that CQ and HCQ are not useful drugs 

in practice, further studies of their mechanism of action could be helpful in improving 

our understanding of COVID-19 pathology.

Keywords: coronavirus, angiotensin-converting enzyme 2, chloroquine, 

hydroxychloroquine, cardiovascular system
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Introduction

The coronavirus disease 2019 (COVID-19) is due to infection by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2).1-3 The most common symptoms 

of COVID-19 are fever and cough.4, 5 Both human-to-human and asymptomatic 

transmission have been reported.6 The COVID-19 pandemic has rapidly evolved into a 

global health crisis as there is currently no proven drug for treating coronavirus patients. 

However, the strategy of drug repurposing may offer hope for a new approach to 

COVID-19 treatment.

Among the myriad existing drugs that are potential repurposing candidates for treating 

COVID-19, the immunomodulatory agents Chloroquine (CQ) and hydroxychloroquine 

(HCQ) have captured great attention. CQ and its more soluble and less toxic metabolite 

HCQ are primarily used for prophylaxis and treatment of malaria, but they have also 

been reported to effectively inhibit the effects of certain viruses, such as severe acute 

respiratory syndrome coronavirus (SARS-CoV) and influenza A H5N.7-10 Recently, the 

possible use of CQ/HCQ as a repurposed therapeutic agent against COVID-19 has been 

explored.11

Angiotensin-converting enzyme 2 (ACE2), a new homolog of ACE, can convert 

angiotensin II (Ang II) to Ang(1-7)12, 13. Ang(1-7) binds and activates the G-protein 

coupled receptor Mas (MasR)14 and acts as a natural damping mechanism for the 

activation of the classical renin-angiotensin system (RAS),12, 13, 15, 16 which plays a 

critical role in maintaining normal cardiovascular (CV) functions. Apart from its crucial 

role in CV disease, ACE2 has also been shown to be a functional host cellular entry 

receptor for coronavirus that directly binds the viral spike (S) protein, which is primed 

by the transmembrane serine protease 2 (TMPRSS2).17-20

The ongoing COVID-19 pandemic, caused by SARS-CoV-2, poses a serious threat to 

global public health, and cross-sectional data suggest that SARS-CoV-2 infected 

patients have a high prevalence of CV disease.21, 22 Recent data indicated that CQ and 
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HCQ (CQ/HCQ) may have a promising ability to inhibit SARS-CoV-2 and other ACE2 

related viral diseases 7-9, but the effects of CQ/HCQ on the CV system seem paradoxical. 

CQ/HCQ shows CV benefits, including a reduction in the risk of developing 

hyperlipidemia and diabetes mellitus, but CV disorder has also been reported as one of 

the rare but severe side effects of CQ/HCQ.23 

 

In this review, we summarize and evaluate the published evidence concerning the 

actions and mechanisms of action of CQ/HCQ in treating SARS-CoV-2 and other 

ACE2 related viral infections. We conclude that further mechanistic studies as well as 

well-designed clinical randomized trials are needed to investigate the molecular 

pathogenesis of SARS-CoV-2 infection and to examine the antiviral efficacy of 

CQ/HCQ against COVID-19. Furthermore, the effects and mechanisms of action of 

CQ/HCQ on the CV system should be further investigated.

ACE2 and its role in viral infection  

The RAS is a humoral regulation cascade that elegantly orchestrates key vascular 

physiology in humans. SARS-CoV-2 infection has been proposed to interfere with RAS 

through the ACE2 receptor for host cell entry (Figure 1).19, 24 Severe COVID-19 

infection has many clinical characteristics which are strikingly similar to the effects of 

overactivation of the RAS. It has been reported that coagulation is activated and 

accelerated in patients with SARS-CoV-2.25 The complex entry process of coronavirus 

into susceptible cells requires multistep actions of receptor-binding and proteolytic 

processing of the S protein to promote virus-cell fusion. S protein cleavage occurs at 

the boundary between the S1 and S2 subunits, and S is further cleaved at the S2’ site 

by host proteases to facilitate the fusion of viral and cellular membranes via extensive 

irreversible conformational changes.26-29 A recent study provided fresh evidence that 

SARS-CoV-2 exploits ACE2 and TMPRSS2 for host cell entry.24 Like SARS-CoV 

entry into host cells,17 the S glycoprotein domain B (SB) of SARS-CoV-2 binds to the 

human ACE2 (hACE2) receptor and is subsequently primed by TMPRSS2.30, 31 

Moreover, SARS-CoV-2 S has a similar or even higher (~10- to 20-fold) affinity for 
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binding to hACE2 as compared to SARS-CoV S.30, 31 However, a novel and very 

important feature of SARS-CoV-2 S is that it harbors a furin cleavage site at the S1/S2 

boundary, which is processed during biosynthesis.31 Therefore, the presence of the 

polybasic cleavage site in SARS-CoV-2 S, processed by furin-like proteases, may 

modulate tropism, transmissibility and pathogenicity of SARS-CoV-2, making it a 

highly pathogenic virus, like avian influenza viruses.32 The relationship between the 

expression level of ACE2 and susceptibly to SARS-CoV-2 infection still remains 

elusive. It will thus be interesting to determine whether SARS-CoV-2 interferes with 

ACE2 expression and activity as well as to evaluate the functional consequence of the 

potential cleavage site used in SARS-CoV-2 and its impact on transmissibility and 

pathogenesis in animal models.

In order to better understand the initial step of SARS-CoV-2 infection, elucidation of 

the interactional mechanism between the receptor-binding domain (RBD) of SARS-

CoV-2 S and ACE2 appears to be particularly important. Two recent independent 

studies have reported the cryo-EM structure of the SARS-CoV-2 spike trimer.30, 31 

Moreover, another study presented the cryo-EM structures of the full-length hACE2-

B0AT1 (the neutral amino acid transporter) complex and a complex between the RBD 

of SARS-CoV-2 and the hACE2-B0AT1 complex as well as the hACE2-RBD 

interface.33 In addition, analytical modelling of structure predicted the potential 

residues of SARS-CoV-2 RBD that are recognized by ACE2.34 Furthermore, X-ray 

crystallography data at a higher resolution showed the interaction between SARS-CoV-

2 RBD and ACE2, demonstrating that SARS-CoV-2 and SARS-CoV RBD share high 

structural similarity.35 It remains to be investigated how SARS-CoV-2 alters the 

conformations of S glycoprotein trimers and the interactions between ACE2 and S 

proteins in receptor-mediated endocytosis. Interestingly, single-cell RNA-sequencing 

data from multiple healthy human tissues discovered that the SARS-CoV-2 entry 

receptor ACE2 and the viral entry-associated protease TMPRSS2 are highly expressed 

in nasal goblet and ciliated cells.36 These new insights indicate that the primary viral 

SARS-CoV-2 transmission occurs through infectious droplets. Although TMPRSS2 
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activity is essential for viral transmission, it still needs to be determined whether the 

endosomal cysteine proteases cathepsin B and L or other proteases, as reported in 

SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV),26, 28, 37-

39 are involved in priming SARS-CoV-2 S. Hence, further mechanistic studies are 

needed to elucidate the underlying detailed mechanism of SARS-CoV-2 entry into host 

cell and to test the potential of SARS-CoV-2 neutralizing antibodies.40, 41

Several studies have reported that 3% to 29% of COVID-19 patients develop acute 

respiratory distress syndrome (ARDS) which is a common complication and cause of 

death as a result of SARS-CoV-2 infection.4, 5, 21, 22 Although the pathophysiology of 

COVID-19 has not been completely unraveled, the potential main mechanism of 

COVID-19-asscoiated ARDS would appear to be the immune-pathological event of the 

so-called cytokine storm. Laboratory tests showed that patients infected with SARS-

CoV-2 express high amounts of pro-inflammatory cytokines and chemokines, including 

interleukin (IL)-1ꞵ, tumor necrosis factor α (TNFα), interferon-γ (IFN-γ), C-X-C motif 

chemokine ligand (CXCL)-10, and monocyte chemoattractant protein 1 (MCP1).4 The 

evidence obtained from the postmortem biopsy study of a 50-year-old male patient 

suggested that the severe immune injury in COVID-19-associated ARDS is related to 

over-activation of T cells, manifested by the elevation of T-helper-17 (Th17) and high 

cytotoxicity of CD8 T cells.42 SARS-CoV-2, SARS-CoV and MERS-CoV cause acute 

lethal disease characterized by dysregulated and excessive immune responses and lung 

damage during viral infection. It was reported that relative delayed type I interferon 

(IFN-I) signaling promoted inflammatory monocyte-macrophage accumulation in 

BALB/c mice infected with SARS-CoV.43 Consequently, these accumulated 

mononuclear macrophages produce more monocyte chemoattractants through 

activating the IFN-α/β receptors and mononuclear macrophage-derived pro-

inflammatory cytokines, such as TNFα, IL-1β and IL-6, induce apoptosis of T cells. 

Robust virus replication and excessive inflammatory responses induced the release of 

IFN-α/β and IFNγ, causing inflammatory cell infiltration via Fas–Fas ligand (FasL) 

signaling or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)–death 
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receptor 5 (DR5) signaling. This eventually results in the apoptosis of airway and 

alveolar epithelial cells.44-46 The apoptosis of these endothelial and epithelial cells could 

potentially lead to vascular leakage and alveolar edema, which is regarded as playing a 

key role in the pathogenesis of virus infection-associated ARDS. It seems to be this 

deadly uncontrolled cytokine storm that triggers the frantic attack on the body by the 

immune system causing ARDS and finally unprecedented mortality in severe cases of 

SARS-CoV-2 infection. Future work needs to investigate the details of the IFN 

signaling involved in SARS-CoV-2 infection, how the inflammatory response is 

triggered as well as the type of cell death that occurs during COVID-19. Also, further 

autopsy or biopsy studies, including more patients of different ages and backgrounds, 

would be needed to examine the histopathological changes and ACE2 levels in different 

tissues.

CQ/HCQ actions on pH

The acid milieu in endosomes and lysosomes (pH between 5 and 6) is due to a 

bafilomycin-sensitive pump that concentrates H+ in the lumen of 

endosomes/lysosomes.47 This low pH is essential for virus/cell membrane fusion.8, 48-

51. CQ was reported to cause an increase in the intra-lysosomal pH of macrophages.52 

However, there is still no evidence showing the effect of HCQ on the pH dynamics of 

endosomes/lysosomes. Nevertheless, both CQ and HCQ are weak bases so they should 

both be able to elevate endosomal pH and could thereby inhibit virus/cell membrane 

fusion. It has recently been reported that CQ is highly effective in the control of SARS-

CoV-2 infection in vitro.11 Compared to remdesivir (GS-5734), the time-of-addition 

assay showed that CQ functioned at entry as well as at post entry stages of the SARS-

CoV-2 infection in Vero E6 cells.11 Similarly, another in vitro study also found that 

HCQ can efficiently inhibit SARS-CoV-2 infection via the same routes.53 The 

therapeutic effect of both CQ and HCQ may be due to blockade of the transport of 

SARS-CoV-2 from early endosomes (EEs) to endo-lysosomes (ELs), which seems to 

be the same viral genome releasing mechanism that operates in the case of SARS-CoV. 

However, the mode of actions of CQ and HCQ showed discrepancy in certain aspects 
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such as in the morphology and pH values of endosomes/lysosomes.53 Another recent 

study found that HCQ exhibited a smaller EC50 than CQ in in vitro anti-SARS-CoV-2 

activity and physiologically-based pharmacokinetic models indicated that HCQ is 

likely to be more effective than CQ in the treatment of SARS-CoV-2 infection.54 

However, there are controversies about the effect of CQ/HCQ in altering endosomal 

/lysosomal pH and treating viral infection. It was reported that CQ/HCQ could directly 

bind to nucleic acids and inhibit the activation of the endosomal toll-like receptor (TLR) 

by masking TLR ligand-binding epitopes rather than increase the endosomal pH.55 In 

addition, CQ was shown to inhibit autophagy mainly through impairing autophagosome 

fusion with lysosomes rather than by increasing pH in this organelle.48 Furthermore, 

there was a study showing that CQ could enhance porcine circovirus 2 infection of 

porcine epithelial cells via inhibition of endosome-lysosome system acidification.56 The 

effect of CQ/HCQ may differ from cell type to cell type and between virus species. 

Nevertheless, whether CQ/HCQ are able to affect the acidity of EEs and ELs in SARS-

CoV-2 infection should be examined carefully in the future.

 

The progressive acidification that normally occurs from EEs to ELs depends on a high 

Ca2+ concentration in the EEs. The pH in the lumen of these organelles decreases in 

line with a decrease in the Ca2+ concentration.56 Ca2+ signaling has been demonstrated 

to be involved in viral fusion into host cells of many viruses such as Ebola virus 

(EBOV), MERS-CoV and SARS-CoV.57 Ca2+ release from intracellular stores within 

the endolysosomal system, via two-pore channels (TPC1, TPC2) and channels 

belonging to the mucolipin family (e.g. TRPML1) can be evoked by nicotinic acid 

adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate 

(PIP2).57, 58 In pancreatic acinar cells, antibodies against TPC2 are very effective, and 

much more effective than antibodies against TPC1, in reducing NAADP-elicited Ca2+ 

release from acidic stores.59 In this context it is of particular interest that it has very 

recently been shown that blocking TPC2 activity by tetrandrine decreases entry of 

SARS-COV-2 S pseudovirions.60 In contrast, a TRPML1 inhibitor had no effect.60   

The endo-lysosomal Ca2+ level and pH, altered by TPC activity,61-63 regulate the 

D
ow

nloaded from
 https://academ

ic.oup.com
/function/article-abstract/doi/10.1093/function/zqaa012/5876834 by guest on 30 July 2020



activity of furin required for proteolytic activation of the S protein and viral fusion.64, 

65 It was reported that inhibition of TPCs rather than TRPML1 could block MERS-CoV 

infectivity.66 Moreover, it has been demonstrated that the endosomal calcium channels 

TPC1 and TPC2 are necessary for EBOV infection.57 Interestingly, tetrandrine has been 

identified as a highly potent and low cytotoxic TPCs inhibitor.57 Because of its ability 

to disrupt TPCs function, tetrandrine can prevent EBOV from escaping the endosomal 

network into the cell cytoplasm and thus block EBOV infection. Some other Ca2+ 

channel blockers such as amiodarone, verapamil, nimodipine, diltiazem, bepridil and 

lomerizine could effectively protect against filoviral entry into target cells.67, 68 Since 

these calcium channels are responsible for controlling trafficking and translocation of 

endosomes containing virus particles, it would be potentially intriguing to explore the 

effect of TPCs in SARS-CoV-2 infectivity and to screen Ca2+ channel blockers for their 

effects in halting SARS-CoV-2 infection. 

Although an open-label non-randomized clinical trial with a small sample size showed 

that HCQ treatment is significantly associated with SARS-CoV-2 load 

reduction/disappearance in COVID-19 patients,69 there are several serious limitations 

in that study. Furthermore, a multicenter prospective observational study reported that 

CQ has the potential to shorten the time to SARS-CoV-2 viral suppression and duration 

of fever in patients with moderate symptoms at earlier stages of the disease.70 Another 

open label, randomized controlled trial did not show additional benefits of virus 

elimination from adding HCQ to the current standard of care in patients with mainly 

persistent mild to moderate COVID-19.71 Meanwhile, a retrospective analysis of 368 

cases with confirmed SARS-CoV-2 infection indicated that using HCQ, either with or 

without azithromycin, could not reduce the risk of needing mechanical ventilation in 

patients hospitalized with COVID-19.72 Fortunately, at least 14 clinical trials are 

already registered in the clinicaltrials.gov73 to evaluate the effects of CQ/HCQ to 

SARS-CoV-2.

CQ/HCQ relationships to ACE2
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There is much evidence indicating that SARS-CoV and SARS-CoV-2 infect host cells 

through ACE2.17, 18, 74, 75,60 Furthermore, CQ could block SARS-CoV fusion with and 

entry into the host cell through interfering with the glycosylation of the ACE2 receptor 

and the S protein.8 CQ/HCQ have promising ability to inhibit SARS-CoV-2 and ACE2-

related viral infection. It has been shown that CQ is an effective inhibitor of the 

replication of the SARS-CoV in Vero E6 cell culture.76 Another study further confirmed 

that CQ is effective against SARS-CoV in Frankfurt and Urbani strains.8 In addition, 

this study found that CQ impaired the terminal glycosylation of ACE2, suggesting that 

the variations in its glycosylation status might result in the ACE2-SARS-CoV 

interaction being less efficient and therefore inhibit virus entry when the cells are 

treated with CQ. Also, it was shown that the recombinant SARS-CoV S protein 

downregulates ACE2 expression.77

In experimental mouse models, infection with avian influenza A H5N1 virus resulted 

in down-regulation of ACE2 expression in the lung.78 Genetic inactivation of ACE2 

caused severe lung injury in H5N1-challenged mice, suggesting a role for ACE2 in 

H5N1-induced lung pathologies.78 CQ was found to effectively inhibit autophagy in the 

lungs of avian influenza H5N1 mice and to ameliorate the acute lung injury and further, 

significantly improve the survival rate in mice infected with live avian influenza A 

H5N1 virus.9 There is also evidence that CQ had an inhibitory effect against the 

replication of human influenza A virus H1N1 and H3N2 in vitro.7 ACE2 could mediate 

the severe acute lung injury induced by influenza A (H7N9) virus infection in an 

experimental mouse model. Moreover, ACE2 deficiency worsened the disease 

pathogenesis markedly, mainly by targeting the Angiotensin II receptor type 1 (AT1 

receptor, AT1R).79 Therefore, the potential effects and mechanism of CQ/HCQ against 

ACE2 related viruses appears worth further investigation.

Paradoxical effect of CQ/HCQ in the cardiovascular system

CQ/HCQ shows CV benefits, including reductions in the risks of developing 

hyperlipidemia, diabetes mellitus, and thrombosis, as well as improving insulin 
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sensitivity, glucose profiles, and HbA1c, and decreasing cholesterol, triglycerides, and 

low-density lipoprotein-cholesterol (LDL-c).80, 81 CQ/HCQ is extensively used in the 

treatment of rheumatic diseases, the patients of which are at higher risk of CV disease.82, 

83 A retrospective study of a cohort of 1,266 patients with rheumatoid arthritis (RA) 

found that HCQ was associated with an approximately 72% reduction in the risk of CV 

disease.84 Another longitudinal registry showed that, compared to non-users, RA 

patients with HCQ treatments had significantly lower levels of total and low-density 

cholesterol.85 A longitudinal cohort study of 264 systemic lupus erythematosus patients 

found lowered serum cholesterol levels associated with HCQ treatment.86 A 

prospective, multicenter observational study of 4905 adults with RA also reported that 

use of HCQ is associated with a 38% reduction of diabetes risk.87 HCQ is also found to 

reduce blood pressure variability among 899 systemic lupus erythematosus patients.88

There are a few small clinical trials studying the effects of CQ/HCQ on CV risks in 

humans. A randomized controlled trial (RCT) carried out among 116 patients with 

metabolic syndrome found that a one-year CQ treatment decreased blood pressure, 

lipids, and the activation of c-Jun N-terminal kinase (JNK).89 Another randomized, 

double-blinded, placebo-controlled crossover study found that a 8-week HCQ treatment 

decreased insulin resistance, total cholesterol, and LDL-c among 23 RA patients.90 A 

small open-label clinical trial administered HCQ to 13 obese participants for six weeks, 

which significantly increased the insulin sensitivity index.91 Another RCT with 135 

patients with sulfonylurea-refractory type 2 diabetes proved that HCQ could decrease 

glycated hemoglobin and improve glucose tolerance.92 

In animal studies, CQ could lower blood pressure through Toll-like receptor signaling 

and prevent the subsequent recruitment of immune cells to the vasculature in 

spontaneously hypertensive rats.93 In rat hepatocytes, CQ was shown to be an effective 

inhibitor of cholesterol synthesis.94 It has also been reported that CQ improved the 

cardiac diastolic function by inhibiting autophagy in streptozotocin-induced heart 

failure with preserved ejection fraction in mice.95 Evidence was also found that 
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activation of ataxia telangiectasia mutated with low-dose CQ decreased features of the 

metabolic syndrome including atherosclerosis in mice.96 Taken together, the claimed 

CV benefits of CQ/HCQ are mostly generated from animal studies or observational 

studies in humans. 

In rare cases, CQ/HCQ treatment presents cardiotoxicity including hypotension, 

arrhythmia, atrioventricular block97, cardiomyopathy23, 98 and heart failure23, 99, which 

could be serious.100, 101 The cardiotoxicity of CQ/HCQ may be under-recognized23. 

Among the 25 episodes of intentional CQ overdosage, 19% died, and 50% had cardiac 

arrest.102 Ex vivo acute CQ treatment decreased heart function, and in vivo chronic low-

dose CQ treatment significantly decreased aortic output and total work in hearts.103 A 

systemic review of  patients with cardiac complications attributed to CQ/HCQ found 

that for the 78 patients reported to have been withdrawn from CQ/HCQ treatment, 44.9% 

recovered normal heart function, while 12.9% had suffered irreversible damage and 

30.8% died.101 

The mechanisms underlying the effects of CQ/HCQ on the CV system are not fully 

understood (Figure 2). CQ could improve insulin sensitivity by increasing the affinity 

of insulin receptors, inhibiting insulin degradation, and increasing insulin secretion.104 

CQ/HCQ could also increase the lipid clearance rate and expression of LDL 

receptors.105 HCQ is thought to protect against accelerated atherosclerosis, targeting 

toll-like receptor signaling, cytokine production, T-cell and monocyte activation, 

oxidative stress, and endothelial dysfunction.106 HCQ can also reduce the induction of 

endosomal NADPH oxidase (NOX) by TNFα, IL-1β and antiphospholipid antibodies 

(aPL) through the inhibition of the translocation of the catalytic subunit of NOX2 into 

the endosome, which is involved in many inflammatory and pro-thrombotic signaling 

pathways.107 However, chronic use of CQ/HCQ can result in an acquired lysosomal 

storage disorder, leading to cardiomyopathy characterized by concentric hypertrophy 

and conduction abnormalities associated with increased adverse clinical outcomes and 

mortality.108 HCQ is structurally and mechanistically similar to the class IA 
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antiarrhythmic quinidine,109 and may therefore inhibit voltage-gated sodium and 

potassium channels, prolonging the QT interval and increasing the risk of ‘torsades de 

pointes’ (a specific type of abnormal heart rhythm) and sudden cardiac death.110 An 

animal study found that high-dose CQ significantly impaired mitochondrial antioxidant 

buffering capacity and accentuated oxidative stress and mitochondrial dysfunction in 

pressure-overload hypertrophy.103 In addition, CQ may increase CV risk by impairing 

the terminal glycosylation of ACE2,8 which possibly amplifies ACE/AngII/AT1 axis 

signaling and depresses ACE2/Ang1-7/MasR axis signaling.

Concluding remarks

The role of ACE2 in the action of CQ/HCQ needs to be further studied. Based on the 

existing studies, CQ/HCQ may be potential drugs for treatment of COVID-19 and other 

ACE2 - related virus infections. However, the use of CQ/HCQ should be dealt with 

cautiously and careful monitoring of potential cardiotoxicity is required in clinical 

practice and research. The use of high doses and long-term CQ/HCQ treatment require 

particular care and serious consideration. 

Understanding how the virus enters host cells, and the details surrounding how it binds 

to the receptor on the host cell, are critical for facilitating the development of detection 

methods, antiviral therapeutics, and vaccines. Reliable information on the molecular 

mechanisms underlying viral entry and proliferation will enable us to target and combat 

the virus.

Finally, it is challenging to interpret the extensive amount of COVID-19 related 

research that has been published within a very short space of time. This is a highly 

unusual situation in the routine life cycles of any research topic. We therefore need to 

maintain a degree of healthy skepticism when interpreting the COVID-19 related 

scientific literature.

Search strategy
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We carried out electronic searches using PubMed, Web of Science, Researchgate and 

Google. The search terms were “virus”, “coronavirus”, “angiotensin-converting 

enzyme 2”, “chloroquine”, “hydroxychloroquine”, “cardiovascular system”, and others, 

alone and in combination. Many firstly identified references were investigated further 

to find the original primary research articles that were then cited in the review.
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Figure 1 The effects of chloroquine and hydroxychloroquine on ACE2 related viral infection.
The initial entry of SARS-CoV-2 (an enveloped virus)111 into host cells depends on ACE2 and 
TMPRSS2. The S protein of SARS-CoV-2 binds to the functional receptor ACE2 and employs 
TMPRSS2 for its priming. S protein is cleaved by TMPRSS2 at S2’ site which results in 
virus/membrane fusion.27 Both ACE2 and TMPRSS2 facilitate the virus transport into the 
target cell through the early and late endosomes where eventually the viral genome will be 
released into the cell cytoplasm. SARS-CoV-2 infection could influence the balance of RAS, 
which leads to Ang II accumulation through the ACE/AngII/AT1R axis and eventually causes 
acute lung injury. CQ/HCQ may block SARS-CoV-2 fusion with the host cell and entry into the 
target cell through elevating the pH in the endolysosomal system and/or by interfering with 
the glycosylation of the ACE2 receptor and the S protein.8 
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Figure 2 The effects of chloroquine and hydroxychloroquine on the cardiovascular system.
CQ/HCQ could protect against accelerated atherosclerosis targeting TLR signaling, cytokine 
production, T-cell and monocyte activation, oxidative stress, and endothelial dysfunction. 
However, CQ/HCQ interferes with the glycosylation of ACE2 and this leads to dysregulation 
of the RAS, which eventually causes imbalance of the ACE/AngII/AT1 axis and the 
ACE2/Ang1-7/MasR axis. Meanwhile, CQ/HCQ can cause cardiotoxicity which may increase 
the risk of CV disease. Therefore, CQ/HCQ may have a paradoxical effect on the CV system.

ACE2, angiotensin-converting enzyme 2. Ang I, angiotensin I. Ang II, angiotensin II. AT1R, 
Angiotensin II receptor type 1. CQ, chloroquine.CV, cardiovascular. HCQ, 
hydroxychloroquine. Mas receptor, MasR. RAS, renin–angiotensin system. SARS-CoV-2, 
severe acute respiratory syndrome coronavirus 2. S protein: Spike protein. TMPRSS2, 
transmembrane serine protease 2. TRL, toll-like receptor. 
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